If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2-4=0
a = 3; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·3·(-4)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*3}=\frac{0-4\sqrt{3}}{6} =-\frac{4\sqrt{3}}{6} =-\frac{2\sqrt{3}}{3} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*3}=\frac{0+4\sqrt{3}}{6} =\frac{4\sqrt{3}}{6} =\frac{2\sqrt{3}}{3} $
| -19=-7y+2(y-7) | | -6r-10=74 | | -4(y+6)=3y+11 | | 107=9x−115+4x+27 | | -36=3(y-8)-5y | | 16+9j=25 | | 34x=80 | | -6(8r-8)=192 | | 5(x-4)=10-5x | | 83c-2=23c-12 | | 4-9j=10-8j | | 5r+7=12+7r | | 9(h-88)=45 | | 2/3x+45=4/5x-51 | | 73-(b+8)-2(3b+4)=6b-2(b-5)+69 | | 6y+30=2(y+3) | | 36=-4-5n | | (x+6)/12=-6 | | -4z+19=-7z-14 | | 2x+2-4x=12 | | 4b-3(6+2b)=12 | | x-2-6=4 | | 17=9+2m | | 3(w-2)=-4w+29 | | 6=-12+h/(-7) | | -8b-9=-9b | | -6(u-4)=4u-6 | | 3+2r=15 | | y-(-20)=21 | | -5v+2(v-8)=-1 | | 2)3f-12=3 | | 5x=-2x+84 |